

Some selected in situ characterization tools for MBE growth and their complementarity

A. Arnoult, P. Gadras, K. Ben Saddick, L. Bourdon and G. Almuneau

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Porquerolles – Ecole d'été du GDR MatEpi 2025

- > In-situ control of growth: a global approach
- > An example structure: the growth of VCSELs
- > Focus on some instruments
 - RHEED
 - Reflectivity
 - Atomic Absorption Spectroscopy for direct flux measurement
 - Band Edge Thermometry for reproducible wafer temperature evaluation
 - Wafer Curvature and stress management
- > Complementarity
 - For alloy concentration/growth rates
 - In time scales
- > Towards automation of MBE growth
 - Bragg mirror automatically grown thanks to spectral reflectivity
 - Automated lattice match control of alloys growth
 - Monitoring MBE substrate deoxidation and surface reconstruction change via RHEED image-sequence analysis by deep learning
- > Conclusions

Issues: growth of complex materials

Ex-situ post-growth tools (XRD, SEM, (HR)TEM, PL, ...)

EpiCentre LAAS CNRS - RIBER

Coupled In situ and **real-time** diagnostics (stress, reflectivity, surface morphology, flux monitoring...)

No diagnostic tool provide a complete picture of the growth process, but coupling them in the same time base maximize their **complementarity**

In-situ measurements at LAAS

A global approach: complementary tools to get a clear picture of growth processes

_AAS

MBE412 - 4" III-V chamber

Spectral reflectivity

- White light source
- CCD sensors

> Temperature

- Band-Edge Thermometry
- Pyrometry
- > Fluxes (Atomic absorption Spectroscopy OFM)
 - Original tool (Patent FR1856743)
- > RHEED: synchronised to rotation
 - In-plane lattice parameter, streaks intensity
- Roughness (Diffuse Light Scattering)

> Curvature

RENATECH RENATECH

• MIC : original tool (Patent FR175461)

In-situ measurements at LAAS

A global approach: complementary tools to get a clear picture of growth processes

AAS

- > Spectral reflectivity
 - White light source
 - CCD sensors

Several tools

- synchronized to rotation
- in the same time base
- Inked to MBE control software
 - > Roughness (Diffuse Light Scattering)
 - > Curvature

RENATECH RENATECH

• MIC : original tool (Patent FR175461)

MBE412 - 4" III-V chamber

FM)

Geometric configuration

LAAS CNRS

MBE412 - 4" III-V chamber

An example structure: the growth of VCSEL

CNRS

RENATECH RENATECH

RENATECH

> MBE solid-sources are not very stable

- Flux transients when cell opening can be >10% of the nominal flux
- Flux drifts due to effusion cells depletion

AI5 ABN150DF AI12 ABN150DF 3a cell temperature (°C) Al cell temperature (°C) 1532 1530 1552 1552 Ga6_ABN300DF Ga11 ABN300DF Growth run Growth run

Cells equivalent temperature for $1 \,\mu$ m/h growth rate over VCSEL run

. . .

Focus on some instruments

In situ characterization tools in MBE: Reflectivity

In-situ characterization tools: *RHEED*

(Reflection High Energy Electron Diffraction)

Diffraction pattern

AAS

- Surface morpholgy
 - Reconstruction (V/III ratio, temperature, ...)
 - Roughness (2D-3D growth, ...)
- Growth rate

RENATECH

RENATECH

I. Hernandez-Calderon, H. Höchst, Phys. Rev. B 27 (1983) 4961

Roughness (2D-3D growth, ...)

M.A. Hafez, M.K. Zayed, H.E. Elsayed-Ali Geometric interpretation of reflection and transmission RHEED patterns Micron, 159 (2022), Article 103286

_AAS

GaAs (001) Ideal surface

As

Ga

GaAs (001) β 2(2x4) surface reconstruction

Live RHEED

GaAs (001) β 2(2x4) surface reconstruction

Image capture synchronized to rotation One image every 2π/n (n=2, 4, ...)

Live RHEED

GaAs (001) β 2(2x4) surface reconstruction

[110] [1-10]

Live RHEED

GaAs (001) β 2(2x4) surface reconstruction

Surface phase diagram for GaAs(001) growth from Ga and As₄

RENATECH

RENATECH

L. Däweritz, R. Hey Surf. Sci. 236, 15(1990)

GaAs (001) - T = 580° C - 12 rpm β 2(2x4) surface reconstruction

Get intensity profiles for each rotation angle

GaAs (001) - T = 580° C - 12 rpm β 2(2x4) surface reconstruction

GaAs (001) - T = 580° C - 12 rpm β 2(2x4) surface reconstruction

W. Braun, Applied RHEED, Springer (1999) Paul Drude Institute Berlin / iRHEED website

Surface reconstruction / crystal phase

RENATECH RENATECI

CNRS

GaAs (001) - T = 580° C - 12 rpm β 2(2x4) surface reconstruction

W. Braun, Applied RHEED, Springer (1999) Paul Drude Institute Berlin / iRHEED website

Surface reconstruction / crystal phase

RENATECH RENATECH

AAS

At LAAS – rotation at 4 rpm GaAs (2x4) surface reconstruction

BiSbTe on Si (111) $(\sqrt{3} \times \sqrt{3})$ surface

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Courtesy S. P. Plissard – LAAS-CNRS

RHEED can also be used to calibrate growth rate, provided that

- No rotation (!)
- Substrate is small to reduce non homogeneity of growth rate along its surface (~1 cm²)

RHEED can also be used to calibrate growth rate, provided that

- No rotation (!)
- Substrate is small to reduce non homogeneity of growth rate along its surface (~1 cm²)

RHEED can also be used to calibrate growth rate, provided that

- No rotation (!)
- Substrate is small to reduce non homogeneity of growth rate along its surface (~1 cm²)

https://www.youtube.com/watch?v=NMTsd9D8vAM

RHEED specular sport intensity oscillations over time $rac{1}{2}$ growth rate

In situ characterization tools in MBE: Reflectivity

In-situ characterization tools: *Reflectivity*

Optical index evolution with Al concentration and temperature

Data:

M.A.A. Afromovitz, *Solid State Commun. (USA)*, **15**, pp59-63 (1974) K.P. O'Donnell, *Appl. Phys. Lett.* **58**, 2924 (1991)

LAAS CNRS

Spectral reflectivity during the growth of a Bragg mirror

-AAS CNRS

EZ-REF software developed within EpiCentre joint lab

Real-time growth rate and refractive index determination of multiple layers

EZ-REF VIS2NIR Spectra

EZ-REF 🔶

_AAS

Reflectivity spectra of a complete VCSEL structure

Real-time stop-band center determination of Bragg mirrors

Real-time Fabry-Perot dip position determination (VCSELs)

Spectral reflectivity is a powerful instrument able to

- Help calibrating growth rates
- Follow some optical features in real-time
- Check early in the growth that everything goes as expected

In-situ characterization tools: *Atomic Absorption*

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

LAAS CNRS

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

LAAS-CNRS

In-situ characterization tools: Band Edge Thermometry

In situ characterization tools in MBE: Band Edge

In situ characterization tools in MBE: Band Edge

BET temperature oscillates when growing different materials

In situ characterization tools in MBE: Band Edge

LAAS-CNRS

LAAS CNRS

In situ characterization tools in MBE: Band Edge

Possibility to map wafer temperature

0 50 4" (100mm) 40 30 588,0 587,0 20 586.0 10 Position (mm) 585,0 0 - 270 90 584,0 583,0 10 582,0 20 581,0 580.0 30 $\Delta = 8^{\circ}C$ 40 50

- > Rather than an **absolute** temperature, BET provides a reproducible temperature independent of experimental conditions (same from MBE chamber to MBE chamber, stable over the long term, etc.)
- > The interest for materials whose growth is very sensitive to temperature (GaAsBi, CdHgTe, etc.) is obvious
- > What about complex GaAs/AlGaAs-based structures (VCSEL - QCL)?

In-situ characterization tools: Curvature

Stress measurement: how ?

> There are two mains ways to measure curvature in situ and in real-time:

- Laser deflection
 - kSA MOS
 - Laytec EpiCurve®TT

https://k-space.com/product/mos/	

.AAS

Stress measurement: how ?

> There are two mains ways to measure curvature in situ and in real-time:

- Laser deflection
 - kSA MOS
 - Laytec EpiCurve®TT

Magnification Inferred Curvature (MIC)
Riber EZ-CURVE®

RENATECH

RFNATEC

> There are two mains ways to measure curvature in situ and in real-time:

Laser deflection

- kSA MOS
- Laytec EpiCurve®TT

Magnification Inferred Curvature (MIC)

Riber EZ-CURVE®

Robust and sensitive technique (thick wafers, rotation (=wobbling), MBE environment, ...)

Curvature/stress measurement: MIC

MIC (Magnification Inferred Curvature)

Curvature/stress measurement: MIC

MIC (Magnification Inferred Curvature)

Arnoult, A., Colin, J. Magnification inferred curvature for real-time curvature monitoring. *Sci Rep* **11**, 9393, 2021 https://doi.org/10.1038/s41598-021-88722-6

RENATECH RENATEC

LAAS-CNRS / Laboratoire d'analyse et d'archit

AAS

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

Curvature: MIC theory

MIC (Magnification Inferred Curvature) **analytical equations whatever the incidence angle:**

Arnoult, A., Colin, J. Magnification inferred curvature for real-time curvature monitoring. *Sci Rep* **11**, 9393 2021) https://doi.org/10.1038/s41598-021-88722-6

RENATECH

RENATEC

LAAS-CNRS

AAS

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

In situ characterization tools in MBE: Curvature

Virtual image magnification analysis: MIC (Magnification Inferred Curvature) measures the magnification factor of a virtual image created by a surface (i.e. a wafer)

Curvature and stress are linked

> Usually, **three stress components** are distinguished:

Extrinsic stress

Induced by external factors: external loading, exposure to environment, ...

Stress/Curvature and crystal growth

Extrinsic stress

Wafer free to expand in holder \Rightarrow no <u>extrinsic</u> stress here

> Usually, **three stress components** are distinguished:

Extrinsic stress

Induced by external factors : external loading, exposure to environment, ...

2. Intrinsic stress

 Stress source introduced during the MBE process : lattice mismatch, growth mode, relaxation, surface and/or interface stress, incorporation or desorption of impurities, phase transformations...

- > Usually, **three stress components** are distinguished:
- Extrinsic stress here
 Induced by extended by extende

Intrinsic stress

 Stress source introduced during the MBE process : lattice mismatch, growth mode, relaxation, surface and/or interface stress, incorporation or desorption of impurities, phase transformations...

- > Usually, **three stress components** are distinguished:
- Extrinsic stress here
 Induced by extended by extende

Intrinsic stress

Stress source introduced during the MBE process : <u>lattice mismatch</u>, growth mode, relaxation, surface and/or interface stress, incorporation or desorption of impurities, phase transformations...

In situ characterization tools in MBE: Curvature

Why thin films are usually in a stressed state?

The stress in the film leads to a bending of the system "film+substrate"

AAS

AAS CNRS In situ characterization tools in MBE: Curvature

- $\sigma_{\rm f}$ = stress in the film
- Satisfying equilibrium conditions ($\Sigma F = 0$ and $\Sigma M = 0$) leads to the **Stoney equation**

 $\cong \frac{6\overline{\sigma_f}h_f}{M_s h_s^2}$ with $Ms = \frac{E}{1 - v}$ **κ** = Stoney

G.G. Stoney, The tensions of metallic films deposited by electrolysis, Proc. R. Soc. Land. A82 (1909) 172-175

1000

Thickness hf (nm)

RENATECH

1500

-6

-8

-10

0

500

RENATECH

MBE growth of GaAs/AlGaAs on a rotating

350 µm-thick (001) GaAs wafer at 600°C

Intrinsic stress

_AAS

LAAS-CNRS

LAAS-CNRS

Intrinsic stress

Intrinsic stress

LAAS CNRS

87

Intrinsic stress

88

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

Intrinsic stress

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

89

LAAS CNRS

- > Usually, **three stress components** are distinguished:
- Extrinsic stress here
 Induced by externa Induced by externa

2. Intrinsic stress

Stress source introduced during the MBE process : <u>lattice mismatch</u>, growth mode, relaxation, surface and/or interface stress, incorporation or desorption of impurities, phase transformations...

Thermal stress

Difference in <u>thermal expansion coefficients</u> between film and substrate

Stress/Curvature and crystal growth

Thermal stress

> > Because thermal expansion coefficient is material dependent, any change in temperature induces a change in stress/curvature of an heteroepitaxial stack.

Stress/Curvature and crystal growth

Thermal stress

> > Because thermal expansion coefficient is material dependent, any change in temperature induces a change in stress/curvature of an heteroepitaxial stack.

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

MIC Robustness to substrate rotation: anisotropy

Wafer : Single-side polished GaAs NID AXT (001) 50mm diameter 350µm thick Measured at 580C Rotation : 12RPM

Because **substrate is rotating**, it is possible to measure the curvature in any direction, and to get a clear view of its shape **in live**

Note : It is also possible to measure this complete shape on non-rotating substrates at normal incidence

AAS

In situ characterization tools in MBE: Curvature

CNRS

Ex-situ characterization of full wafer shape

100mm GaAs wafer + VCSEL growth

See www.dip-view.com

In situ characterization tools in MBE: Curvature

MIC : some experimental results

RIBER EZ-CURVE

Tunnel jonctions for solar cells

Real-time observation of relaxation

RENATECH

RENATECH

_AAS

Complementarity for alloy concentration / growth rate measurement

> Stoney equation:

 $\kappa \approx \frac{6\overline{\sigma_f}h_f}{M_s h_s^2} = 6\frac{h_f}{h_s^2}\frac{M_f}{M_s}\varepsilon = -6\frac{h_f}{h_s^2}\frac{M_f}{M_s}\frac{a_f - a_s}{a_s} \qquad \text{Avec } M = \frac{E}{1 - \nu}$

Young Modulus

Compositional dependence of the elastic constants and the lattice parameter of AlGaAs Gehristz et al. PRB 60 (16), 1999

$$a_f = a_{AlGaAs} = xa_{AlAs} + (1 - x)a_{GaAs}$$

$$\kappa \approx -\frac{6h_{AlGaAs}}{{h_s}^2} \times x \times \frac{a_{AlAs}(T) - a_{GaAs}(T)}{a_{GaAs}(T)}$$

Growth rate: Curvature

$$k \approx -\frac{6h_{AlGaAs}}{{h_s}^2} \times x \times \frac{a_{AlAs}(T) - a_{GaAs}(T)}{a_{GaAs}(T)}$$
$$\frac{\Delta \kappa}{\Delta t} \approx -\frac{6 \times G_{AlAs}}{{h_s}^2} \times \frac{a_{AlAs}(T) - a_{GaAs}(T)}{a_{GaAs}(T)}$$

with
$$h_{AlGaAs} = G_{AlGaAs} \times t$$

= $(G_{GaAs} + G_{AlAs}) \times t$
 $x = \frac{G_{AlAs}}{G_{GaAs} + G_{AlAs}}$

LAAS CNRS

Reflectivity – Curvature complementarity

CNRS

Spectral reflectivity

RFNATE

RENATEC

Amplitude

Spectral reflectivity

RF

RENATEC

NATE

Amplitude

Spectral reflectivity

AAS CNRS

RENATECI

Spectral reflectivity

AAS

RFNATF

RENATECI

Spectral reflectivity

RENATECH

Complementarity and time scales

> Reflectivity, Atomic Absorption and Curvature adress different time scales / thicknesses

	Reflectivity	Curvature	Atomic Abs.
10H / 10µm	+++	+++	+
1H / 1µm	++	+++	+
Minutes / 10 th nm	-	++	++
Seconds / ml	x	+	+++

Towards automation of MBE growth

Bragg mirrors automatically grown thanks to spectral reflectivity

Bragg mirrors automatically grown

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

AAS

Auto-DBR growth: Experiment

LAAS-CNRS / Laboratoire d'analyse et d'architecture des systèmes du CNRS

Auto-DBR growth: Primary Results

FTIR measurement of 5 periods auto-DBR and comparison with expected

 \rightarrow Phase compensation effect

 \rightarrow Good control of the centering wavelength

Automated lattice match control of alloys growth

MIC (Riber EZ-CURVE) and Crystal XE

117

https://www.ez-curve.com/

/ Laboratoire d'analyse et d'architecture des systèmes du CNRS

Automatic lattice match control of a 730 nm-thick InGaAs on InP

Rotating substrate:

- (001) InP
- 50 mm dia.
- 400 µm thick

RENATECH

RENATECH

Automatic lattice match control of a 730 nm-thick InGaAs on InP

Rotating substrate:

- (001) InP
- 50 mm dia.
- 400 µm thick

RENATECH

RENATECH

Rotating substrate: Automatic lattice match control of a 730 nm-thick InGaAs on InP (001) InP 50 mm dia. 400 µm thick 0.73 µm InGaAs on InP HRXRD 107 InGaAs growth Cooling down. 12 908 10⁶ InP substrate 10 907 In_{0.522}Ga_{0.478}As layer 8 Counts per second 10⁵ 906 6 ပိ ပိ stress cell temperature 905 10⁴ 2 904 0 10³ -2 Manual Manual Manual Manual Manual 903 -4 10² <u>_</u> -6 902 -8 10 901 ≥ 20°C 20°C 500°C -10 -12 900 10⁰ 1800 0 3600 5400 62.5 63.0 63.5 64.0 Growth time (s) **2**θ (°) PID loop on indium cell (set on curvature change) Thermal expansion coefficients mismatch

thermal stress

Curvature (km⁻¹)

Automatic lattice match control of a 730 nm-thick InGaAs on InP

Automatic lattice match control of a 730 nm-thick InGaAs on InP

Bisaro et al, Appl. Phys. Lett. **34**(1), 100 (1979)

- $\alpha_{\text{ln}_{0.53}\text{Ga}_{0.47}\text{As}} = (5.55 \pm 0.10) \times 10^{-6} / \text{°C}$
- α_{InP} = (4.56 ± 0.10) x 10⁻⁶ / °C

RENATECH

Automatic lattice match control of a 730 nm-thick InGaAs on InP

Rotating substrate:

- (001) InP
- 50 mm dia.
- 400 μm thick

PID loop on indium cell (set on curvature change)

PID loop on indium cell (set on curvature change)

RENATECH

RENATECH

RENATECH

- > Magnification Inferred Curvature (MIC) makes it possible to <u>control automatically</u> the lattice parameter of the growing layer in MBE
- > Thermal expansion needs to be considered in order to reach a perfect after-growth lattice match
- Sector States States

Monitoring MBE substrate deoxidation and surface reconstruction change via RHEED image-sequence analysis by deep learning

Surface deoxidation and AI

Native oxide removal

Plach et al, Journal of Applied Physics 2013, 113

- Slowly heating the subtrate
- Detect deoxydation moment
- Stop heating to avoid damaging the crystal

oxidized surface

deoxidized surface

Courtesy A Khaireh Walieh – LAAS-CNRS

Neural network architecture

Khaireh-Walieh et al, Crystal Growth & Design 2023, 23, 2, 892-898

dataset of 7644 images $\begin{cases} 80\% \text{ for training} \\ 20\% \text{ for validation} \end{cases}$

Surface deoxidation and AI

Test with a set of images captured during the entire deoxidation procedure and varying the sequence length as well as the latent space size.

Khaireh-Walieh et al, Crystal Growth & Design 2023, 23, 2, 892-898

Surface reconstruction: (2×4) and $c(4 \times 4)$

Penev et al, Physical review letters 2004, 93, 14, 146102

- Rearrangement of surface atoms
- Depending on the growing conditions

RENATECH

• Inter-atomic forces only from the bulk side

(2x4)

c(4x4)

RHEED patterns

model overview

RENATECH

3150 images $\begin{cases} 85\% \text{ for training} \\ 15\% \text{ for validation} \end{cases}$

Courtesy A Khaireh Walieh – LAAS-CNRS

AAS

Neural network architecture

RENATECH

RENATECH

Courtesy A Khaireh Walieh – LAAS-CNRS

AAS

Model test

CNRS

Test with images captured during surface transition: $c(4 \times 4)$ to (2×4) .

Model test

CNRS

Test with images captured during surface transition: (2×4) to $c(4 \times 4)$

- AI make it possible to monitor automatically complex processes that only trained users can detect
- > Work in progress

 In situ and real-time instruments address complementary information

 Substrate temperature, growth rates, growth modes, surface geometry, ... can be analyzed in real time

Different time scales can be monitored

- Coupling in-situ tools
 - \rightarrow Further understanding of the growth mechanisms

RFNATE

RENATECH

 Control of growth and properties of epitaxial materials and device structures

The authors acknowledge the joint laboratory EPICENTRE between LAAS-CNRS and RIBER. This work was supported by the LAAS-CNRS micro and nanotechnologies platform, a member of the French RENATECH network.

LAAS-CNRS

