

Growth modes/Wetting and dewetting

P. Müller Aix Marseille Université

Centre Interdisciplinaire de Nanoscience de Marseille UMR 7325 CNRS Aix-Marseille Université

I/ A few concepts

II/ Imaging the surface dynamics

III/ Wetting

IV/ Growth modes

V/ Dewetting

Reviews

C. Misbah, O. Pierre-Louis, Y. Saito, « Crystal surfaces in and out of equilibrium » Rev. Modern Physics, 82 (2010) 981-1040

P. Müller, A. Saul, « *Elastic effects on surface physics »* Surface Science Reports, 54 (2004) 157-258

M. Giesen, « Step and island dynamics at solid/vacuum and solid/liquid interfaces » Progress in Surface Science 68 (2001) 1-153

J. Hyeong-Chai, E. Williams, « Steps on surfaces: experiments and theory » Surface Science Reports 34 (1999) 171-294

Books

B. Mutaftschiev, « The atomic nature of crystal growth » Springer 2001

A. Pimpinelli, J. Villain, Physics of crystal growth, Alea Savlay 1998

I. Markov, « Crystal growth for beginners » World Scientific 1995

Y. Saito, « Statistical physics of crystal growth » World Scientific 1996

H. Ibach, « Physics of surfaces and interfaces » Springer 2006

S. Andrieu, P. Müller, « Les surfaces solides: concepts et méthodes » CNRS 2005

I/ A few concepts

Concept of ideal flat surfaces (by cleavage process)

A surface is created by cutting a crystal

Energetic cost to cut the crystal: W

Surface energy density: $\gamma = W/2S$

For a Kossel crystal (First neighbors interactions)

 $\gamma = \phi / 2a^2$

 $\gamma = 2\phi / (2\sqrt{2})a^2$

 $\gamma = 3\phi / (2\sqrt{3})a^2$

Generalization:

 $\gamma_{hkl} = \frac{W_{hkl}}{2A_{hkl}} = \frac{1}{2A_{hkl}} [n_1(hkl) + n_2(hkl) + n_3(hkl) + \cdots]$

The gamma plot

Quasi-isotropic gamma-plot

Anisotropic gamma-plot

The concept of vicinal (stepped) surfaces

Vicinal surface:

flat terraces separated by steps

Vicinal angle: $\tan \theta = a/\ell$

$$p = \tan \theta$$
 step density

$$\beta(\theta) = \gamma_0 + \beta_1 |p| + \beta_3 |p|^3$$

 β_1 Step energy

 β_3 Step-step interaction

Adhesion energy and Dupre relation

A. Dupré, *Théorie mécanique de la chaleur* (Gauthier-Villard, 1869), p. 369

With broken bonds with only first neighbours model

$$\beta = \frac{\Phi_{AB}}{a^2}$$
 Adhesion energy

$$\gamma_i = \frac{\Phi_i}{2a^2}$$
 Surface energy (density)

$$\gamma_{AB} = \frac{\Phi_i}{2a^2} + \frac{\Phi_i}{2a^2} - \frac{\Phi_{AB}}{a^2}$$
 Interfacial energy

Surface creation

Increase area upon stretching (deformation)

Α δ**Α**

Surface stress

• Work per surface area

 $s_{ij} [mJ/m^2] = W/\delta A$

- Tensor, anisotropic
- Origin : modification of the bond strength

For liquids there is no need to distinguish them. The quantity $s=\gamma$ is called surface tension

P. Müller, A. Saul, « Elastic effects on surface physics » Surface Science Reports, 54 (2004) 157-258

Surface energy VerSUS surface stress

Ag

P. Müller, A. Saul, *« Elastic effects on surface physics »* Surface Science Reports, 54 (2004) 157-258

- Surface energy
 - one branch (scalar)
 - minima at low index

- Surface stress
 - two branches
 - diagonal at high symmetry points
 - maxima at low index orientations

II/ Imaging the surface dynamics

Reflection Electron Microscopy (REM)

-e⁻ energy typically 20 keV

- -Surface sensitive (grazing incidence, image distortion)
- in-situ real time 0.1s/image
- -<u>5 nm</u> lateral resolution
- -<u>Atomic</u> vertical resolution

Low Energy Electron Microscopy

(LEEM)

-e⁻ energy typically < 20 eV
-Surface sensitive (normal incidence, no image distorsion)
- <u>in-situ real time</u> 0.1s/image
-<u>10 nm</u> lateral resolution
-<u>Atomic vertical resolution</u>

Typical REM image of a vicinal surface

Typical LEEM image of a Si (001) surface

III/ Wetting

Wetting: Case of a liquid droplet deposited on a solid or a liquid

Young equation obtained by minimising the total surface energy

$$\cos\theta = \frac{\gamma_{sv} - \gamma_{sl}}{\gamma_{lv}}$$

 θ is the Contact (or wetting) angle

Looks like a force projection but ... $\gamma_{sv} = \gamma_{lv} \cos \theta + \gamma_{sl}$

Adhesion energy: $\beta = \gamma_{l\nu}(1 - \cos \theta)$

Equilibrium shape of a crystal on a solid substrate

Lead on graphite

J.J.Métois, J.C. Heyraud Surface Science 128 (1983) 334

- Shapes do not depend on the crystal volume
- Truncated shapes (with respect to free crystals)
- Here coexistence of rounded face and flat facets

Equilibrium shape of a crystal on a solid substrate

$$\Delta F = -n\Delta\mu + \sum_{i} \gamma_{i}S_{i} + (\gamma_{AB} - \gamma_{B})S_{AB}$$

G.Wulff, Z.Krist. 34 (1901) 446

$d\Delta F = 0$ leads to the **Wulff-Kaishew theorem**

$$\frac{\Delta\mu}{2\nu} = \frac{\gamma_i}{h_i} = \frac{\gamma_{AB} - \gamma_B}{h_{AB}} = \frac{\gamma_A - \beta}{h_{AB}}$$

R.Kaishew, Commun. Bulg. Acad. Sci. 1 (1950) 100

Wulff-Kaishew theorem

$$\frac{\Delta\mu}{2\nu} = \frac{\gamma_A}{h_A} = \frac{\gamma_A + \gamma_{AB} - \gamma_B}{h_A + h_{AB}} = \frac{2\gamma_A - \beta}{h_A + h_{AB}}$$

Synthesis

Free equilibrium shape

Deposited equilibrium shape (without elasticity) Truncated shape

Deposited equilibrium shape (with elasticity) Thickening induced by elasticity

IV/ Growth modes

Growth modes

Bauer criterion E. Bauer Z. Krist. 110 (1958) 372

3D growth

$$\gamma_A + \gamma_{AB} > \gamma_B$$

The system mimimizes its energy with large areas of bare B

2D growth

 $\gamma_A + \gamma_{AB} < \gamma_B$

The system mimimizes its energy by covering B

Growth conditions depend on the sign of the so-called Wetting factor

 $\Phi = \gamma_A + \gamma_{AB} - \gamma_B$

Extension of the Bauer criterion **with elasticity**: *R. Kern, P. Müller, J. Cryst. Growth 146, (1995) 193*

But a mixed mode exists the Stranski Krastanov mode (2D then 3D)

What is the driving force?

Vanishing Φ ?

Oscillating Φ ??

Orginal work for polar crystals :

L. Stranski, L. Krastanov, Sitz. Ber. Akad. Wiss. Wien. 146 (1938)

Actually three ingredients:

• $\phi < 0$ but decreasing with z (the number of bonds to break varies)

• Elastic energy stored by the 2D mifitted layers

$$\Delta W_{\rm el} = \frac{E_{\rm A}}{1 - v_{\rm A}} m^2$$

• Elastic relaxation of the islands (and its substrate)

Application for: Si(111)/Ge(111) on z 2D layers

P. Müller, R. Kern, App. Surf. Sci. 102 (1996) 6

ξ=1

KMC Simulation of 2D Growth

$\Phi < 0$

Leem movie of Frank-van der Merwe growth Pb on Si(111) previously covered by 1 ML of Au

1 ML Au formation followed by layer-by-layer Pb growth

Schmidt et al PRB 62 (2000) 15815

KMC simulation of 3D Growth

Zepeda-Ruiz Handbook Crystal growth 2015

LEEM movie of Stranski Krastanov growth of Au/W(111)

Three 2D layers followed by the growth of 3D dendritic crystals

LEEM Movie of Stranski-Krastanov growth of Fe/W(001) at 800 K $2D \rightarrow 3D$ transition from a stable pseudomorpic state

2: 2D layer growthfollowed by3D islands growth

Y. Niu et al. PRB 95 (2017) 064404

Stranski-Krastanov growth of Fe/W(001) at 600 K $2D \rightarrow 3D$ transition form metastable pseudomorphic state

1/ 2D growth until 2 ML

2/3D nucleation at 3.2 ML

3/ 3D growth consuming material in excess of 2 ML

Y. Niu et al. PRB 95 (2017) 064404

Atomic description of the incorporation of units growth

Kossel crystal

The three type of surfaces: F: flat, S: stepped K: kinked W.Kossel, Nachrichten der Gesellschaft der Wissenschafften Göttingen Mathematisch-Physikalische Klasse, Band 135 (1927)

P. L. Ferrari, M. Prähofer, and H. Spohn, Phys. Rev. E 69, *page* 035102, **2004.**

Growth shapes versus equilibrium shape

F. Frank, in Growth and perfections of crystals, John Wiley and sons, New York (1958), 411

K face: Ideal growth by direct incorporation

$$V = a^3 \frac{P - P_{eq}}{\sqrt{2\pi mkT}} = a^3 J_{eq} \left[e^{\Delta \mu/kT} - 1 \right] \approx K \frac{\Delta \mu}{kT}$$

S face: Ideal Vicinal growth by step flow

W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R. Soc. Lond. 243 (1951) 299.

REM movie of step flow on various vicinalities

Simulation of the growth on an ideal F face: 2D islands growth

Growth on a Real F face: Pyramidal growth

LEEM movie of pyramidal growth

W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R. Soc. Lond. 243 (1951) 299.

B. Ranguelov et al. Surf. Sci. 600 (2006) 4848

V/ Dewetting

Dewetting of a metastable film

Dewetting of A/B: The essential

Surface energy change :

$$\Delta F = \left(\gamma_A + \gamma_{AB} - \gamma_B\right) \left(\ell^2 - L^2\right) + 4\gamma'_A h\ell$$

Wetting for negative ϕ Dewetting for positive ϕ

Example : **Dewetting of SOI**

E. Bussmann et al.

LEEM movie of dewetting from a front

LEEM movie of dewetting from a hole

Dewetting: liquids versus solids

	Liquids	Solids
Mechanisms	Hydrodynamics, mass motion	Surface diffusion
		x ₀ h*
Structure	Isotropic	Anisotropic
Theoretical concepts	Surface tension	Surface free energy and Surface stress

Continuous models for solids or liquids (Mullins approach based on surface diffusion)

Mass conservation

Transport: surface diffusion

 $\mu \sim \kappa$

Driving force: curvature

Mullins Equation

Receding of a straight front: simulation

Mullins, JAP 28 (1957) 333

F. Cheynis et al. CR Phys. 14 (2013)

 $x(t) \sim t^{2/5}$

 $h(t) \sim t^{1/5}$

Anisotropy effects

LEEM movie of front thickening

$\begin{array}{c} x \\ h \\ SiO_2 \end{array}$

F. Leroy et al. PRB 85 (2012)n195414

KMC Simulations

Dornel et al. PRB 73 (2006) 115427

Continuous models for solids or liquids (Mullins approach based on surface diffusion)

 $\mu \sim \kappa$

Mass conservation

.

 $R(t) \sim t^{1/4}$

 $\vec{j} = - \vec{\nabla} \mu$

Transport: surface diffusion Driving

Opening of a circular hole:

D.J. Srolovitz and C.V. Thompson Thin Solid Films

(4000)

O. Pierre-Louis et al. PRL 99 (2007); PRL 103 (2009); PRB 90 (2014)

Dewetting from a hole in a Si(001) film

KMC simulation

Hole Wulff shape Corner instability Island formation 0 24

F. Cheynis et al. PRB 84 (2011) 245439

KMC

AFM

Dewetting mechanism fom a hole

F. Cheynis et al. PRB 84 (2011) 245439

Can we master the dewetting ?

For a review: F. Leroy et al. surf. Sci. Rep. 71 (2016) 391

Dewetting from pattern

Naffouti et al., Sci. Adv. 2017;3

S. Curiotto et al. APL 104 (2014) 061603

Dewetting inhibition

Thank for your attention