

Chapter II Epitaxy : experimental description

II.6 Comparison of oxide and semiconductor epitaxy and oxide/semiconductor integration

Guillaume Saint-Girons

INL-UMR5270/CNRS, Ecole Centrale de Lyon, 36 avenue Guy de Collongue 69134 Ecully cedex, France

Outlook

Introduction

Increasing

<u>dissimilarity</u>

- a. Accommodation/growth mode and material-substrate dissimilarity
- b. Oxides and semiconductors : comparison of some properties relevant to epitaxy

Strained 2D growth and plastic relaxation

- a. Dislocation mediated plastic relaxation process
- b. Plastic relaxation : oxides vs semiconductors
- c. Some exotic effects of oxide epitaxy related to epitaxial strain

Strain free 3D growth

- a. Strain-induced 3D growth: Stranski-Krastanov growth mode
- b. Interface induced 3D growth

Highly dissimilar epitaxial systems

- a. Indirect epitaxial relationships
- b. Mismatch accommodation via interfacial dislocation networks
- c. Interface chemical reactions

Conclusion and future challenges

- a. Oxide/Si templates: a mature technology for integration
- b. MBE for oxide growth

Accommodation/growth mode and material-substrate dissimilarity

Nucleation free enthalpy: $\Delta G = V(E_{el} - \Delta \mu) + S_{AB}(\gamma_{AB} + E_{dis} - \gamma_B) + S_A \gamma_A$

G. Wulf, Z. Kristallog. 34, 449 (1901), P. Müller and R. Kern, Surf. Sci. 457, 229 (2000)

Accommodation/growth mode and material-substrate dissimilarity

Accommodation/growth mode and material-substrate dissimilarity

Elastic energy

$$E_{el} = \frac{Y_A}{1 - \nu_A} m^2 \left(1 - e^{-2k/p}\right)$$

 Y_A : Young modulus v_A : Poisson ratio

 $m = \frac{a_A - a_B}{a_B}$: lattice mismatch

p: droplet aspect ratio

k: 0.073 for a flat cylinder, 0.082 for a spherical cap

K. Tillmann and A. Förster, Thin Solid Films **368**, 93, (2000)

$$E_{dis} = mb \frac{Y_A Y_B}{Y_A (1 + \nu_A) + Y_B (1 + \nu_B)} \left(\frac{1}{4\pi} ln \frac{R_c}{b} + 0.1\right)$$

b: Burger vector norm R_c : Cut-off radius (1/2 distance between 2 successive dislocations or droplet height)

Accommodation/growth mode and material-substrate dissimilarity

Critical volume V_c

The observed configuration is that minimizing V_c

2D-strained (Frank-Van der Merwe or Stranski-Krastanov)

3D-relaxed (Vollmer-Weber)

2D-relaxed (Frank-Van der Merwe)

Accommodation/growth mode and material-substrate dissimilarity

Accommodation/growth mode and material-substrate dissimilarity

Where on this diagram are the Ox/Ox, SC/SC and Ox/SC epitaxial systems?

Oxide and semiconductors : some properties relevant to epitaxy

m?

 $\gamma_{AB} - \gamma_B$?

$$\gamma_{AB} - \gamma_B = \gamma_A - \beta \sim N_B \left(\frac{x E_{AA}}{2} - min(x, 1) E_{AB} \right)$$

$$\gamma_{AB} - \gamma_B \begin{cases} = -\gamma_A \text{ (homoepitaxy)} \\ < -\gamma_A \text{ if } xE_{AB} > \frac{xE_{AA}}{min(x,1)} \\ > -\gamma_A \text{ otherwise} \end{cases}$$

 γ_A typically ranges from 0.8 to 1.6 J/m²

Oxide and semiconductors : some properties relevant to epitaxy

Exploring the phase diagram with semiconductor and oxide examples

- a. Dislocation mediated plastic relaxation
- **b.** Plastic relaxation: comparison of oxides and semiconductors
- c. Other effects of epitaxial strain on oxide growth
 - BaTiO₃ ferroelectric domain structure
 - Strain-assisted phase selection during Carpy-Gally compound growth

Dislocation mediated plastic relaxation

13

Dislocation mediated plastic relaxation

Plastic relaxation : comparison of oxides and semiconductors

Plastic relaxation : comparison of oxides and semiconductors

Partial charges hinder dislocation nucleation and propagation

BaTiO₃ ferroelectric domain structure

Optimal domain structure for non volatile memory

Optimal domain structure for electro-optic modulator

(LiNbO₃: $r_{33} = 15 \ pm/V$, $r_{33} = 30 \ pm/V$) 17

BaTiO₃ ferroelectric domain structure

Strain-assisted phase selection during Carpy-Gally compound growth

E. Gradauskaite et al., Adv. Mater. 37, 2416963 (2025)

Strain free 3D growth

a. Strain-induced 3D growth: Stranski-Krastanov growth modeb. Interface induced 3D growth

Strain free 3D growth Strain induced 3D growth

Stranski-Krastanov growth mode

InAs/GaAs Lattice mismatch m = 7.16%Strong adhesion, $\gamma_{AB} < 0$ Ouantum Wetting layer 10 nm

Strain free 3D growth Interface induced 3D growth

GaP/Si

Lucci et al., Phys Rev Mat 2, 060401(R), (2018)

Low mismatch: m = 0.37% $\gamma_{Si} = 1.4 J/m^2$ $\gamma_{GaP} = 0.92 J/m^2$ $\gamma_{GaP/Si} > 0.5 J/m^2$ (DFT)

$$\alpha_B = \frac{\gamma_{GaP/Si} - \gamma_{Si}}{\gamma_{GaP}} > -0.98 > -1$$

Ge/BaTiO₃

Low mismatch: m = 0.2%

 $\gamma_{BTO} = 1 J/m^2$ $\gamma_{Ge} = 0.8 J/m^2$ Instable Ge-O interface bonds

$$\alpha_B = \frac{\gamma_{Ge/BTO} - \gamma_{BTO}}{\gamma_{Ge}} > -1$$

Highly dissimilar epitaxial systems

a. Indirect epitaxial relationships

- Driven by lattice mismatch
- Driven by interface energy

b. Mismatch accommodation via interfacial dislocation networks

- Dislocation entry at the early stages of the growth
- Defects formed during coalescence

b. Interface chemical reactions

- Growth window
- SrTiO₃/Si : the knitting machine

Highly dissimilar epitaxial systems Indirect epitaxial relationships

SrTiO₃/Si(001): epitaxial relationship driven by lattice mismatch R. McKee et al., Phys. Rev. Lett. 81, 3014 (1998) STO layer **S**r $+45^{\circ}$ Si[1-10]//STO[010] **T**i 3,905 0 STO Si Amorphous Si **&**Z/<u>(</u>601) silicate layer [110]_{LAO} 5,431 Si[110]//STO[100] Si[001]//STO[001] [100]_{Si} 20 nm

"
« Cube on cube »: m = 48%45° rotation: m = 1.7%

Highly dissimilar epitaxial systems Indirect epitaxial relationships

Gd₂O₃/Si(001): epitaxial relationship driven by interface energy

« Cube on cube »: m = -0.44%, **62% dangling bonds** Indirect: $m = -0.44 \times 5.6\%$, **25% dangling bonds**

Osten et al., Phys. Status Solidi (a), 205, 695 (2008)

Highly dissimilar epitaxial systems Mismatch accommodation via interfacial dislocation networks

InP/SrTiO₃ and Ge/SrTiO₃

Danescu et al., Appl. Phys. Lett. 103, 021602 (2013), Saint-Girons et al., Appl. Phys. Lett. 92, 241907 (2008)

Full mismatch accommodation by interface dislocations formed at the very early stages of the growth

Highly dissimilar epitaxial systems

Mismatch accommodation via interfacial dislocation networks

InP/SrTiO₃: coalescence

Step 1 islands

Low temperature (400°C) High P (10⁻⁵ Torr) → condensation

Step 2 coalescence

High temperature (510°C) Low P (10⁻⁶ Torr) → Surface diffusion

Step 3 growth

480°C – 10⁻⁵ Torr → Standard InP conditions

Highly dissimilar epitaxial systems Mismatch accommodation via interfacial dislocation networks

Integration of InP based heterostructures on Si using SrTiO₃ templates

500 nm thick InAsP/InP/STO/Si quantum well heterostructure

Gobaut et al, Appl. Phys. Lett. **97**, 201908, (2010)

Intense and narrow PL signal @300K

Microdisk laser : light amplification but no lasing

Highly dissimilar epitaxial systems Mismatch accommodation via interfacial dislocation networks

Integration of InP based heterostructures on Si using SrTiO₃ templates: defects and limitations

Highly dissimilar epitaxial systems

Interface chemical reactions

Growth window: SrTiO₃/Si(001)

The direct growth of $SrTiO_3$ on Si is impossible : silicates/silicides formation

→ Si surface passivation

Highly dissimilar epitaxial systems

Interface chemical reactions

Narrow growth window

SrTiO₃ growth process :

1-deposition of (partially) amorphous STO @300°C 2-crystallization by annealing @450°C under UHV

SrTiO₃ crystallization requires an excess of Sr

Order parameter P (P=1 for pure STO) $P = \frac{n(Sr - Ti) - (n(Sr - Sr) + n(Ti - Ti))}{n(Sr - Ti) + n(Sr - Sr) + n(Ti - Ti)}$

« STO » is composed of STO, SF, SrO and TiO₂ ~ partial demixion

Sr/Ti = 1.015: optimal chemical and structural order

SrTiO₃/Si(001): crystallization process

After crystallization: antiphase domain morphology

a. Oxide/Si templates: a mature integration technology

b. MBE for oxide growth: advantages and challenges

Oxide/Si templates: a mature integration technology

SrTiO₃/Si : good structural quality can be achieved

Wang Phys. Rev. Mat. 3, 073403 (2019)

Dislocations and out-of-plane antiphase boundaries resulting from the crystallization process limit the structural quality

Oxide/Si templates: a mature integration technology

A short review

• ...

TiO₂ → photocatalytic water splitting

Choi J. Appl. Phys. 111, 064112, (2012)

• LaCoO₃ → thermoelectric, ferromagnetic

Posadas Appl. Phys. Lett. **98**, 053104, (2011)

• BaTiO₃ → nanoelectronic/memories/photonics

Niu Microelec. Eng. **88**, 1232, (2011) Dubourdieu Nature Nanotech. **8**, 881, (2013) Scigaj Appl. Phys. Lett. **109**, 122903 (2016) Eltes J. Ligthw. Tec. **37**, 1456 (2019)

• LaAlO₃ → high-k dielectric

Mi Appl. Phys. Lett. 90, 181925, (2007)

• BiFeO₃ → multiferroic

Wang Appl. Phys. Lett. 85, 2574, (2004)

• PZT → RF-filters/MEMS

Lin Appl. Phys. Lett. 78, 2034, (2001)

- LaSrMnO₃ → spintronics, sensors
 Le Bourdais J. Appl. Phys. 118, 124509, (2015)
- PMN-PT → RF-filters/MEMS Baek Science 334, 6058 (2011)
- Diamond → high power electronics
 Arnault Diamond Rel. Mat. 105, 107768 (2020)
- *HfZrO*₂ → nanoelectronics Song Nanoscale 15, 222901 (2023)
- LiNbO3 → photonics
 Bartasyte, Nanotechnology 35, (2024)

Li₄Ti₅O₁₂ → batteries

Lacey, ACS Applied Mat. Int. 15, 1535 (2022)

MBE for oxide growth: advantages and challenges

MBE presents unique features for oxide growth

- Flexible composition control
- Interface engineering → oxide/semiconductor integration
- Heterostructures and superlattices
- High structural quality

Reproducible composition control under oxygen remains challenging

- Source drift due to elemental load oxidation
- Flux measurement under oxygen is challenging

Developing strategies for real time flux measurement and control under oxygen is the key to further improve oxide MBE process reliability